image_to_image
The Image-to-Image package consists of PyTorch models, run scripts (training and inference), Physgen Dataloader, Testscript and evaluation notebook. It also adds special losses, scheduler and more.
Implemented models:
- Pix2Pix (UNet Generator with adversarial loss)
- PhysFormer (Transformer)
- ResFCN (Simple fully convolutional network - no shrinking)
- ResidualDesignModel (Model which consist of 2 of the other models)
Use this model by running:
import sys
sys.path += ["."]
from image_to_image import main
main()
Now set all your arguments/settings through the python argument. Example:
start /B python ./your_py_file_name.py ^
--mode train ^
--epochs 50 ^
--batch_size 1 ^
--lr 0.001 ^
--loss weighted_combined ^
--wc_loss_silog_lambda 0.5 ^
--wc_loss_weight_silog 0.1 ^
--wc_loss_weight_grad 5.0 ^
--wc_loss_weight_ssim 10.0 ^
--wc_loss_weight_edge_aware 5.0 ^
--wc_loss_weight_l1 1.0 ^
--wc_loss_weight_var 0.0 ^
--wc_loss_weight_range 0.0 ^
--wc_loss_weight_blur 0.0 ^
--optimizer adamw ^
--weight_decay ^
--weight_decay_rate 0.05 ^
--gradient_clipping ^
--gradient_clipping_threshold 2.0 ^
--scheduler cosine ^
--use_warm_up ^
--warm_up_start_lr 0.000005 ^
--warm_up_step_duration 2000 ^
--activate_amp ^
--amp_scaler grad ^
--checkpoint_save_dir ./checkpoints ^
--save_only_best_model ^
--validation_interval 2 ^
--model physicsformer ^
--physicsformer_in_channels 1 ^
--physicsformer_out_channels 1 ^
--physicsformer_img_size 256 ^
--physicsformer_patch_size 4 ^
--physicsformer_embedded_dim 1024 ^
--physicsformer_num_blocks 8 ^
--physicsformer_heads 16 ^
--physicsformer_mlp_dim 2048 ^
--physicsformer_dropout 0.1 ^
--data_variation sound_reflection ^
--input_type osm ^
--output_type standard ^
--device cuda ^
--experiment_name image-to-image ^
--run_name physicsformer_test ^
--tensorboard_path ./tensorboard ^
--save_path ./mlflow_images ^
--cmap gray ^
> ./logs/physicsformer_test.log 2>&1
Open the folder with the evaluation notebook:
from image_to_image import open_notebook_folder
open_notebook_folder()
1""" 2The Image-to-Image package consists of 3PyTorch models, run scripts (training and inference), 4Physgen Dataloader, Testscript and evaluation notebook. 5It also adds special losses, scheduler and more. 6 7Implemented models: 8- Pix2Pix (UNet Generator with adversarial loss) 9- PhysFormer (Transformer) 10- ResFCN (Simple fully convolutional network - no shrinking) 11- ResidualDesignModel (Model which consist of 2 of the other models) 12 13Use this model by running: 14```python 15import sys 16sys.path += ["."] 17 18from image_to_image import main 19main() 20``` 21 22Now set all your arguments/settings through the python argument. Example: 23``` 24start /B python ./your_py_file_name.py ^ 25 --mode train ^ 26 --epochs 50 ^ 27 --batch_size 1 ^ 28 --lr 0.001 ^ 29 --loss weighted_combined ^ 30 --wc_loss_silog_lambda 0.5 ^ 31 --wc_loss_weight_silog 0.1 ^ 32 --wc_loss_weight_grad 5.0 ^ 33 --wc_loss_weight_ssim 10.0 ^ 34 --wc_loss_weight_edge_aware 5.0 ^ 35 --wc_loss_weight_l1 1.0 ^ 36 --wc_loss_weight_var 0.0 ^ 37 --wc_loss_weight_range 0.0 ^ 38 --wc_loss_weight_blur 0.0 ^ 39 --optimizer adamw ^ 40 --weight_decay ^ 41 --weight_decay_rate 0.05 ^ 42 --gradient_clipping ^ 43 --gradient_clipping_threshold 2.0 ^ 44 --scheduler cosine ^ 45 --use_warm_up ^ 46 --warm_up_start_lr 0.000005 ^ 47 --warm_up_step_duration 2000 ^ 48 --activate_amp ^ 49 --amp_scaler grad ^ 50 --checkpoint_save_dir ./checkpoints ^ 51 --save_only_best_model ^ 52 --validation_interval 2 ^ 53 --model physicsformer ^ 54 --physicsformer_in_channels 1 ^ 55 --physicsformer_out_channels 1 ^ 56 --physicsformer_img_size 256 ^ 57 --physicsformer_patch_size 4 ^ 58 --physicsformer_embedded_dim 1024 ^ 59 --physicsformer_num_blocks 8 ^ 60 --physicsformer_heads 16 ^ 61 --physicsformer_mlp_dim 2048 ^ 62 --physicsformer_dropout 0.1 ^ 63 --data_variation sound_reflection ^ 64 --input_type osm ^ 65 --output_type standard ^ 66 --device cuda ^ 67 --experiment_name image-to-image ^ 68 --run_name physicsformer_test ^ 69 --tensorboard_path ./tensorboard ^ 70 --save_path ./mlflow_images ^ 71 --cmap gray ^ 72 > ./logs/physicsformer_test.log 2>&1 73``` 74 75Open the folder with the evaluation notebook: 76```python 77from image_to_image import open_notebook_folder 78open_notebook_folder() 79``` 80""" 81from . import model_interactions 82from . import utils 83from .main import main 84from .utils.package import open_notebook_folder